
MiaRec

Moments Query-Language-Reference-Guide

MiaRec, Inc.

Copyright © 2024 MiaRec, Inc.

Table of contents

31. Introduction

31.1 Advantages of MQL

31.2 More examples of MQL expressions

52. MQL Syntax

52.1 Searching for Phrases and Words

102.2 Searching for Named Entities

112.3 Searching by Metadata

172.4 Operators

Table of contents

- 2/22 - Copyright © 2024 MiaRec, Inc.

1. Introduction

Moments Query Language (MQL) is a special-purpose query language designed to analyze call transcripts.

The expressions written in MQL are used in the MiaRec platform for the following tasks:

extracting topics and keywords from a transcript

automatic evaluation of agents

redacting sensitive data from recordings and transcripts, for example, credit card numbers

1.1 Advantages of MQL

MQL lets you search not only the words spoken, but also temporal patterns like beginning/end of a call, nearness,

speaker (agent vs customer), fuzzy matching and more.

Examples of such queries:

error NEAR:5 website

Search for the word "error" spoken near the word "website", with a distance between these words no more than 5 words.

AGENT: ("my name is" OR "this is")

Search for an agent to say the words "my name is" or "this is"

R"[0-9]+" AFTER ("credit card" OR "security code")

Search for any digits (0-9) spoken after the anchor words "credit card" or "security code"

POSAFTER:-50 CUSTOMER: thank*

Search in the last 50 words of the conversation (i.e. the end of a call) for a customer saying words that match a wildcard

pattern thank* (i.e. match "thank", "thanks", etc)

MQL lets you query the metadata attributes like call duration, sentiment score, etc.

Examples of such queries:

AGENT: (problem NEAR ship*) AND $call-duration > "2:00"

Search for an agent to say the word "problem" near a word that starts with ship (e.g. "shipment", "shipping", as well as

probably non-relevant "ship"), but only when a call duration is longer than 2 minutes.

(cancel NEAR order) AND $sentiment-score < -50

Search for the word "cancel" near the word "order", but only when a sentiment score is lower than -50 (very negative).

1.2 More examples of MQL expressions

error

Search for the word "error" in a transcript

•

•

•

1. Introduction

- 3/22 - Copyright © 2024 MiaRec, Inc.

error NEAR:5 website

Search for the word "error" spoken near the word "website", with a distance between these two words no more than 5 words.

Such a query would match phrases like "error on your website", "website shows an error", but not "error when I tried to

order the service on your website", because the distance between the searched words in this last example is more than 5.

("speak to" OR "transfer to") ONEAR (supervisor OR manager)

Search for the phrase that begins with the anchor words "speak to" or "transfer to" followed by either the word "supervisor"

or "manager", i.e. such an expression will match phrases like "speak to supervisor", "speak to manager", "transer to

supervisor", as well as "speak to YOUR supervisor" (i.e. with other words in a middle).

AGENT: "my name is"

Search for the phrase "my name is" spoken by an agent.

POSBEFORE:50 AGENT: ("my name is" OR "this is")

Search for the phrase "my name is" or "this is" spoken by an agent in the first 50 words of a conversation.

POSAFTER:-20 CUSTOMER: thank*

Search for any word that starts with "thank" (e.g. "thank", "thanks") spoken by a customer in the last 20 words of the

conversation.

R"[0-9]+" AFTER:50 ("credit card" OR "security code")

Search for any digit (0-9) spoken after the anchor words "credit card" or "security code", with a distance of up to 50 words

between the anchor words and the digits.

1.2 More examples of MQL expressions

- 4/22 - Copyright © 2024 MiaRec, Inc.

2. MQL Syntax

2.1 Searching for Phrases and Words

MQL supports searching for a phrase or a word using the following text matchers:

2.1.1 Word and Quoted Term matches

A Quoted Term matcher requires that the text matches literally to the search term. This is best demonstrated in the following

examples.

"cancel order"

This Quoted Term expression matches the phrase "cancel order", but not "cancel my order".

To overcome such a limit, you can use the operator OR to list all the variants of a phrase, like:

"cancel order" OR "cancel my order" OR "cancel this order"

cancel ONEAR:5 order

This expression consists of two Word matchers (the words cancel and order), with a proximity operator ONEAR:5 between

them.

The ONEAR:5 operator instructs the search engine to find the word "cancel" followed by the word "order", with a distance

between these two words no more than 5.

Such an expression matches phrases "cancel order", "cancel my order", "cancel my recent order", etc.

Note 1. The operator ONEAR is order-dependent, i.e. the word "cancel" must appear in a transcript before the word "order".

There is an alternative operator NEAR that is order-independent.

Note 2. The operator ONEAR:5 can be omitted because it is a default operator in MQL expressions, i.e. the expression cancel

order is the same as cancel ONEAR:5 order .

cancel NEAR:5 order

This expression uses an order-independent operator NEAR, which instructs the search engine to find the words "cancel" and

"order", that appear in a transcript close to each other (distance up to 5 words), the order of appearance of the searched

words is not important.

Such an expression matches "cancel my order" as well as "order that I want to cancel", where words appear in reverse

order.

Matcher Example Description

Word shipment Search for the word "shipment" in a transcript

Quoted

Term

"problem with

a shipment"

Search for the exact phrase "problem with a shipment" in a transcript

Simple

(wildcard)

pattern

ship* Search for the words that begin with "ship", like "shipment", "shipping", as well

as "ship"

Regex

pattern

R"ship(ment|

ping)"

Search for the words matching the regular expression, in this example, it matches the

words "shipping" and "shipment". Note, with such a regular expression, ship

doesn't have to be at the beginning of the word, i.e. it will match the word pre-

shipment as well. To enforce a match on word boundaries, add \b (boundary of

word) to the regular expression, for example, R"\bship(ment|ping)\b" .

2. MQL Syntax

- 5/22 - Copyright © 2024 MiaRec, Inc.

2.1.2 Case insensitiveness

Both Word and Quoted Term matchers are case-insensitive, e.g. the expression order will match "order", "Order", "ORDER"

and "oRDER".

2.1.3 Escaping a quote character

To search for a quote symbol (") literally, repeat it twice "" .

Example:

"foo "" bar"

This expression matches the phrase foo " bar.

Note, the double "" is supported in a Quoted Term only. It is a syntax error to use a quote inside a Word matcher, like foo""bar ,

but it is ok to use it in a Quoted Term matcher, like "foo""bar" .

2.1.4 Simple (wildcard) pattern

A Word matcher supports wildcard pattern matching.

The following table describes wildcard patterns, listing the pattern and its use.

2.1.5 Regular expression (REGEX) pattern

To match complex text patterns, use Regular expressions (REGEX).

The regular expression must be enclosed into R" and " characters. Examples:

To match a quote (") character in a regular expression, include it twice, like R"foo""bar" .

MiaRec supports standard regular expression patterns.

Pattern Use Example

* Match zero or more characters bl* matches bl, black, blue, and blob

? Match exactly one occurrance of any character h?t finds hot, hat, and hit

[abc] Match one occurance of the characters a, b, or c. h[oa]t finds hot and hat, but not hit

[!az] Match any characters except a or z h[!oa]t finds hit, but not hot and hat

[a-c] Match one occurance of a character between a and c c[a-c]t finds cat and cbt, but not cut

The wildcard patterns are supported in a Word matcher only. A Quoted Term interprets those symbols literally. For example bl* is a

pattern match, but "bl*" is the exact match.

Such a difference between Word and Quoted Term matchers is useful when you need to search for one of the wildcard symbols

literally in a text.

For example, to find an exclamation point in a text, use a Quoted Term expression, like "Great!"

Note

Pattern Use

R"[0-9]+ Match one of more digits in a text

R"ship(ment|ping) Match words "shipment" and "shipping"

2.1.2 Case insensitiveness

- 6/22 - Copyright © 2024 MiaRec, Inc.

A regular expression may use any of the following metacharacters:

.

Matches any single character. For example:

... will match "abc", but not "ac" or "abbc"

[]

A bracket expression. Matches a single character that is contained within the brackets. For example:

... will match "a", "b" or "c".

... will match "hat" and "cat".

A - character between two other characters forms a range that matches all characters from the first character to the second.

For example:

... will match any decimal digit.

... will match any lowercase letter from "a" to "z".

These forms can be mixed:

... will match "a", "b", "c", "x", "y" or "z".

To include a literal - character, it must be written first or last, for example, [abc-] , [-abc] .

To include a literal] character, it must immediately follow the opening bracket [, for example, []abc] .

[^]

Matches a single character that is not contained within the brackets. For example:

... will match any character other than "a", "b", or "c".

... will match any single character that is not a lowercase letter from "a" to "z".

As above, literal characters and ranges can be mixed, like [^abcx-z]

*

Matches the preceding element zero or more times. For example:

... will match "ac", "abc", "abbbc" etc.

a.c

[abc]

[hc]at

[0-9]

[a-z]

[abcx-z]

[^abc]

[^a-z]

a*c

2.1.5 Regular expression (REGEX) pattern

- 7/22 - Copyright © 2024 MiaRec, Inc.

... will match "" (empty string), "0", "1", "2", "14", "502", "98541654", and so on (any combination of digits).

()*

Matches zero of more instances of the characters sequence, specified inside parentheses. For example:

... will match "", "ab", "abab", "ababab", and so on.

... will match "", "1234", "12341234", "123412341234", and so on.

+

Matches the preceding element one or more times. For example:

... will match "ba", "baa", "baaa", and so on.

... will match "00", "01", "02", "001", "01234", "09876543210", or any other combination of digits with preceding 0 and

minimum length equal to two characters.

?

Matches the preceding element zero or one time. For example:

... will match "b", or "ba", but not "baa"

... will match "0", "01", "02", "03", and so on.

|

The choice (aka alternation or set union) operator matches either the expression before or the expression after the operator.

For example:

... will match "abc" or "def".

... will match phone number, which starts with either 0 or 011.

{n}

Matches the preceding element exactly n times. For example:

... will match "aaa", but not "a", "aa" or "aaaa"

[0-9]*

(ab)*

(1234)*

ba+

0[0-9]+

ba?

0[0-9]?

abc|def

(0|011)[1-9]+

a{3}

[0-9]{5}

2.1.5 Regular expression (REGEX) pattern

- 8/22 - Copyright © 2024 MiaRec, Inc.

... will match "01234", "56789" or any other combination of digits, which has lenght 5 characters.

{m, n}

Matches the preceding element at least m and not more than n times. For example:

... will match "aaa", "aaaa", "aaaaa", but not "aa" or "aaaaaaaa".

{m, }

Matches the preceding element at least m times. For example:

... will match "aa", "aaa", "aaaa", and so on.

^

Matches the beginning of a string. For example:

... will match "hat" and "cat", but only at the beginning of the string

$

Matches the end of a string. For example:

... will match "hat" and "cat", but only at the end of the string

... will match "hat" and "cat", but only when the string contains no other characters

\

Backslash (\) character is used for escaping metacharacters. For example:

... will match "12", "112", "11112", but not "1+2", because "plus" character has a special meaning (see above).

... will match exactly "1+2". In this example, "plus" character is escaped with backslash character (\+).

a{3,5}

a{2,}

^[hc]at

[hc]at$

^[hc]at$

1+2

1\+2

2.1.5 Regular expression (REGEX) pattern

- 9/22 - Copyright © 2024 MiaRec, Inc.

2.2 Searching for Named Entities

Named-entity recognition (NER) is a subtask of information extraction that seeks to locate and classify named entities mentioned

in unstructured text into pre-defined categories such as person names, organizations, locations, time expressions, quantities,

monetary values, etc.

MiaRec voice analytics automatically extract the following names entity classes from a transcript:

Table 1. Supported named entity classes

2.2.1 Using NER classes in MQL expressions

Named entity classes can be included in MQL expression.

For example, the class #PERSON can be used in data redaction expression to automatically remove person names from audio

recordings and transcript.

Another sample expression

In the above example, we are searching for digits 0 to 9 (using the Regex pattern [0-9]+), but not if they are found inside a text

labeled with MONEY class.

Named entity class Description

#CARDINAL Numerals that do not fall under another type

#DATE Absolute or relative dates or periods

#EVENT Named hurricanes, battles, wars, sports events, etc.

#FAC Buildings, airports, highways, bridges, etc.

#GPE Countries, cities, states

#LANGUAGE Any named language

#LAW Named documents made into laws.

#LOC Non-GPE locations, mountain ranges, bodies of water

#MONEY Monetary values, including unit

#NORP Nationalities or religious or political groups

#ORDINAL "first", "second", etc.

#ORG Companies, agencies, institutions, etc.

#PERCENT Percentage, including "%"

#PERSON People, including fictional

#PRODUCT Objects, vehicles, foods, etc. (not services)

#QUANTITY Measurements, as of weight or distance

#TIME Times smaller than a day

#WORK_OF_ART Titles of books, songs, etc.

R"[0-9]+" NOTIN #MONEY

2.2 Searching for Named Entities

- 10/22 - Copyright © 2024 MiaRec, Inc.

2.3 Searching by Metadata

You can use call attributes in MQL expressions.

For example, if you would like to search for a greeting phrase "Thank you for calling" for inbound calls only, then the expression

can include $direction attribute, like in:

AGENT: "thank you for calling" AND $direction = inbound

2.3 Searching by Metadata

- 11/22 - Copyright © 2024 MiaRec, Inc.

2.3.1 Call attributes

Table 1. Support call attributes

2.3.1 Call attributes

- 12/22 - Copyright © 2024 MiaRec, Inc.

Attribute Type Description Example

$caller-number text Caller party phone number $caller-number = "12345"

$called-number text Called party phone number $called-number ~ "866*

$caller-name text Caller party name $caller-name = "David Amado"

$called-name text Called party name $called-name != "David Amado"

$participant-

number

text Participant phone number (either caller or

called party)

$participant-number = "12345"

$participant-name text Participant phone name (either caller or

called party)

$participant-name = "David

Amado"

$user-name text Name of the user, to whom the call is

assigned

$user-name = "David Amado"

$user-extension text Extension of the user, to whom the call is

assigned

$user-extension = "12345"

$user-id uuid ID of the user, to whom the call is assigned $user-id = "9ef4b87c-5446-499a-

b712-44d3509c0576"

$group-name text Name of the group, to whom the call is

assigned

$group-name = "Sales Department"

$group-id uuid ID of the group, to whom the call is assigned $group-id = "9ef4b87c-5446-499a-

b712-44d3509c0576"

$tenant-name text Name of the tenant, to whom the call is

assigned

$tenant-name = "West Coast"

$tenant-id uuid ID of the tenant, to whom the call is

assigned

$tenant-id =

"9ef4b87c-5446-499a-

b712-44d3509c0576"

$call-id uuid ID of the call $call-id = "9ef4b87c-5446-499a-

b712-44d3509c0576"

$parent-call-id uuid ID of the parent call $parent-call-id =

"9ef4b87c-5446-499a-

b712-44d3509c0576"

$setup-time datetime Date and time of the call start time $setup-time >= "2023-01-01

00:00:00"

$duration timedelta Duration of the call $duration < "1:00"

$diretion text Direction of the call. One of "inbound",

"outbound", "internal" and "uknown"

$direction = inbound

$sentiment-score number Sentiment score of the call $sentiment-score < 0

$sentiment-agent-

score

number Sentiment score of agent side of the call $sentiment-agent-score < -50

$sentiment-

customer-score

number Sentiment score of customer side of the call $sentiment-agent-score >= 0

$sentiment-label text Sentiment score label of the call. One of

"very-negative", "negative", "neutral",

"positive", "very-positive"

$sentiment-label = "very-

negative"

$sentiment-agent-

label

text Sentiment score label of the call $sentiment-agent-label =

"negative"

2.3.1 Call attributes

- 13/22 - Copyright © 2024 MiaRec, Inc.

2.3.2 Comparison operators

Table 2. Supported comparison operators for text attribute types

Table 3. Supported comparison operators for number attribute types

Attribute Type Description Example

$sentiment-

customer-label

text Sentiment score label of the call $sentiment-customer-label =

"positive"

$topic-name text Name of the topic, assigned to the call $topic-name = "Payment language"

$topic-id uuid ID of the topic, assigned to the call $topic-id = "9ef4b87c-5446-499a-

b712-44d3509c0576"

Comparison operator Description Example

= Equal to $caller-number = "12345"

== Equal to $caller-number == "12345"

: Equal to $caller-number: "12345"

!= Not equal to $caller-number != "12345"

<> Not equal to $caller-number <> "12345"

> Greater than (by alphabetical order) $topic-name > "1. Payment language"

>= Greater than or equal to (by alphabetical order) $topic-name >= "3. Shipping problem"

< Less than (by alphabetical order) $topic-name < "1. Payment language"

<= Less than or equal to (by alphabetical order) $topic-name <= "3. Shipping problem"

~ Simple pattern (case sensitive) $user-name ~ "John*"

~* Simple pattern (case insensitive) $user-name ~* "john*"

~~ Regex pattern (case sensitive) $phone-number ~~ "800[0-9]{6}"

~~* Regex pattern (case insensitive) $phone-name ~~* "(john|marry)"

Comparison operator Description Example

= Equal to $sentiment-score = 50

== Equal to $sentiment-score == 50

: Equal to $sentiment-score: 50

!= Not equal to $sentiment-score != 50

<> Not equal to $sentiment-score <> 50

> Greater than $sentiment-score > 0

>= Greater than or equal to $sentiment-score >= -50

< Less than $sentiment-score < -50

<= Less than or equal to $sentiment-score <= 0

2.3.2 Comparison operators

- 14/22 - Copyright © 2024 MiaRec, Inc.

Table 4. Supported comparison operators for datetime attribute types

Table 5. Supported comparison operators for timedelta attribute types

Comparison operator Description Example

= Equal to $setup-time = "2023-01-01 00:00:00"

== Equal to $setup-time == "2023-01-01 00:00:00"

: Equal to $setup-time: "2023-01-01 00:00:00"

!= Not equal to $setup-time != "2023-01-01 00:00:00"

<> Not equal to $setup-time <> "2023-01-01 00:00:00"

> Greater than $setup-time > "2023-01-01 00:00:00"

>= Greater than or equal to $setup-time >= "2023-01-01 00:00:00"

< Less than $setup-time < "2023-01-01 00:00:00"

<= Less than or equal to $setup-time <= "2023-01-01 00:00:00"

Comparison operator Description Example

= Equal to $duration = "5:00"

== Equal to $duration == "5:00"

: Equal to $duration: "5:00"

!= Not equal to $duration != "5:00"

<> Not equal to $duration <> "5:00"

> Greater than $duration > "1:00"

>= Greater than or equal to $duration >= "0:15"

< Less than $duration < "15:00"

<= Less than or equal to $duration <= "0:15"

2.3.2 Comparison operators

- 15/22 - Copyright © 2024 MiaRec, Inc.

Table 6. Supported comparison operators for uuid attribute types

2.3.3 Multi-value attributes

Some attributes may have multiple values, like attributes $topic-name , $participant-number , $user-name , $group-name , etc.

For example, when multiple topics are assigned to a call, then the expression $topic-name = "Payment language" will evaluate to

TRUE when either of the assigned topics is "Payment language".

Another example is the $participant-number attribute. Every call has at least two participants, so the expression $participant-

number = 1234 will evaluate to TRUE if either of the caller or called party phone numbers is 1234.

2.3.4 Comparing to a sub-expression

A call attribute can be compared to a sub-expression like:

$caller-number = (1234 OR 5679)

$sentiment-label = ("negative" OR "very-negative")

2.3.5 Comparing to another attribute

A call attribute can be compared to another attribute like:

$caller-number = $called-number

2.3.6 Combining an attribute match with a text match

MQL expression can include both text and attribute expressions, like:

"thank you for calling" AND $direction = inbound

(cancel NEAR order) AND $sentiment-score < -30

Comparison

operator

Description Example

= Equal to $topic-id =

"79705555-5c4d-46b4-987d-7257fe2ae23e"

== Equal to $topic-id ==

"79705555-5c4d-46b4-987d-7257fe2ae23e"

: Equal to $topic-id: "79705555-5c4d-46b4-987d-7257fe2ae23e"

!= Not equal to $topic-id !=

"79705555-5c4d-46b4-987d-7257fe2ae23e"

<> Not equal to $topic-id <>

"79705555-5c4d-46b4-987d-7257fe2ae23e"

> Greater than (by alphabetical order) $topic-id >

"79705555-5c4d-46b4-987d-7257fe2ae23e"

>= Greater than or equal to (by alphabetical

order)

$topic-id >=

"79705555-5c4d-46b4-987d-7257fe2ae23e"

< Less than (by alphabetical order) $topic-id <

"79705555-5c4d-46b4-987d-7257fe2ae23e"

<= Less than or equal to (by alphabetical

order)

$topic-id <=

"79705555-5c4d-46b4-987d-7257fe2ae23e"

•

•

•

•

•

2.3.3 Multi-value attributes

- 16/22 - Copyright © 2024 MiaRec, Inc.

2.4 Operators

MQL syntax supports various operators that you can use to build more complex queries.

The following table briefly describes the MQL operators.

2.4.1 Grouping

Multiple expressions can be grouped with parentheses to form a more complex expression.

Operator Use Example

AND The result of expression x AND y is TRUE when both x and y evaluate to TRUE . website AND problem

OR The result of expression x OR y is TRUE when either x or y evaluate to TRUE purchase OR buy

& A synonym of operator AND website & problem

| A synonym of operator OR purchase | buy

NOT The result of expression NOT z is TRUE when z evaluates to FALSE NOT "replacement

order"

NOTIN The result of expression x NOT y is TRUE when x evaluates to TRUE , but x

doesn't overlap with y

problem NOTIN "not a

problem

NEAR The result of expression x NEAR:5 y is TRUE when both x and y evaluate to

TRUE and a distance between them is no more than 5

cancel NEAR:3 order

NOTNEAR The result of expression x NOTNEAR:5 y is TRUE when x evaluates to TRUE and y

either evaluates to FALSE or is found in a transcript at a distance of more than 5

number NOTNEAR:3

phone

ONEAR The result of expression x ONEAR:5 y is TRUE when both x and y evaluate to

TRUE and a distance between them is no more than 5, and x appears in a

transcript before y

cancel ONEAR:3 order

AFTER The result of expression x AFTER:5 y is TRUE when both x and y evaluate to

TRUE and x appears in a transcript before the y at a distance no more than 5

R"[0-9]+" AFTER:20

"credit card"

POSBEFORE The result of expression POSBEFORE:50 x is TRUE when x evaluates to TRUE and

x appears in a transcript in the first 50 words

`POSBEFORE:50 "my

name is"

POSAFTER The result of expression POSAFTER:50 x is TRUE when x evaluates to TRUE and x

appears in a transcript after the 50th word. A position can be negative, where

POSAFTER:-50 means the last 50 words of a transcript

`POSAFTER:-50

"Have a great day"

AGENT The result of expression AGENT: x is TRUE when x evaluates to TRUE and the

matched phrase was spoken by agent

AGENT: "my name is"

A A synonym to AGENT A: "my name is"

CUSTOMER The result of expression CUSTOMER: x is TRUE when x evaluates to TRUE and the

matched phrase was spoken by customer

CUSTOMER: "my name

is"

C A synonym to CUSTOMER C: "my name is"

REPEATS The result of expression REPEATS:5-10 x is TRUE when x evaluates to TRUE and

appears in a transcript between 5 to 10 times

REPEATS:5-10 "great"

2.4 Operators

- 17/22 - Copyright © 2024 MiaRec, Inc.

Examples:

2.4.2 Precedence rules

When no parentheses are present, then the operators are evaluated in the following order:

NOTNEAR

ONEAR

NEAR

NOTIN

REPEATS

AGENT , A , CUSTOMER , C

POSAFTER

POSBEFORE

Metadata comparison characters, like $sentiment < -10

NOT

AND

OR

2.4.3 Default operator

If no operator is included between terms, then a default ONEAR:5 operator is used:

Expression Description

(quick OR brown) AND fox matches "quick fox", "brown fox", but not "grey fox"

cancel* NEAR (order|account) matches "cancel order", "order is cancelled", "I am cancelling my account", "I

want to cancel this order"

problem NOTIN ("no problem" OR "not a

problem")

matches "This is a problem", but ignores "no problem at all", and "not a

problem"

•

•

•

•

•

•

•

•

•

•

•

•

Expression Equivalent form

quick OR brown AND fox quick OR (brown AND fox)

quick NEAR brown AND fox (quick NEAR brown) AND fox

Expression Equivalent form

brown fox brown ONEAR:5 fox

(quick OR brown) fox (quick OR brown) ONEAR:5 fox

quick OR brown fox quick OR (brown ONEAR:5 fox)

The ONEAR operator has a higher priority than OR and AND (see the Precedence rules section).

For example, the expression quick AND brown fox is interpreted by the search engine as quick AND (brown ONEAR:5 fox)

Note

2.4.2 Precedence rules

- 18/22 - Copyright © 2024 MiaRec, Inc.

2.4.4 Boolean operators (AND, OR, NOT, & and |)

Synonyms & and I

Symbols & and | are synonyms for AND and OR respectively.

When using | and & symbols, a space charter between words is optional. The following are valid expressions:

(quick | brown | grey) & fox

(quick|brown|grey)&fox

Case in operator names

A case in the operator's name is important. AND is treated as an operator, while and is treated literally as a word "and" in the

text "what a beautiful and amazing day".

Order of the matched terms

For boolean operators, and order of the matched words is not taken into account. If an order is important, then use the ONEAR

operator.

Distance between the matched terms

For boolean operators, a distance between words is not taken into account, i.e. the expression x AND y will evaluate to TRUE

when terms x and y are found anywhere in a transcript. Use Quoted Term or operators NEAR , ONEAR and NOTNEAR if a distance is

important.

2.4.5 Proximity operators (NEAR, ONEAR, NOTNEAR, NOTIN, AFTER)

Proximity operators allow you to locate one searched term within a certain distance of another.

Expression Description

quick OR brown matches "quick fox" and "brown fox"

quick AND fox matches "quick fox"

NOT brown AND fox matches "quick fox" but not "brown fox"

Expression Equivalent form

quick | brown quick OR brown

quick & fox quick AND fox

(quick | brown | grey) & fox (quick OR brown OR grey) AND fox

•

•

Expression Description

quick AND fox matches both "quick fox" and "fox quick"

Expression Description

quick AND fox matches both "quick fox" and "quick dog was chasing a fox"

"quick fox" matches "dog was chasing a quick fox" bot not "quick dog was chasing a fox"

quick NEAR:3

fox

matches "quick fox" and "quick and cute fox" but not "quick dog was chasing a fox", because of a

distance between quick and fox words is more than 3 words.

2.4.4 Boolean operators (AND, OR, NOT, & and |)

- 19/22 - Copyright © 2024 MiaRec, Inc.

NEAR[:x]

Finds the phrase where the terms joined by the operator are within the specified number of words of each other. Where x is the

maximum distance between the searched terms.

Key features:

A distance parameter is optional. If omitted, a default distance of 5 is used, i.e. NEAR is equivalent to NEAR:5

An order of the found terms is not taken into account, i.e. brown NEAR fox will match both "dog is chasing brown fox" and

"fox is chasing brown dog".

When chaining multiple operators, then parentheses must be used if the distance is not the same.

For example, expressions brown NEAR quick NEAR fox and brown NEAR:2 quick NEAR:2 fox are both valid, but

brown NEAR:2 quick NEAR:5 fox is not a valid expression because a distance is 2 in one case and 5 in another. Parentheses

must be added to make such expression valid: (brown NEAR:2 quick) NEAR:5 fox

ONEAR[:x]

Similar to the NEAR operator, but an order of the matched terms is taken into account. For example, brown NEAR fox will match

"brown fox" but not "fox brown".

Key features:

A distance parameter is optional. If omitted, a default distance of 5 is used, i.e. ONEAR is equivalent to ONEAR:5

When chaining multiple operators, then parentheses must be used when the distance is not the same.

For example, expressions brown ONEAR quick ONEAR fox and brown ONEAR:2 quick ONEAR:2 fox are both valid, but

brown ONEAR:2 quick ONEAR:5 fox is not a valid expression because a distance is 2 in one case and 5 in another.

Parentheses must be added to make such expression valid: (brown ONEAR:2 quick) ONEAR:5 fox

NOTNEAR[:x]

Syntax:

•

•

•

Expression Description

cancel* NEAR

order

Matches "cancel my order", "order is cancelled", but not "cancel my account and then place an

order", because of a distance between cancel and order in the last example is more than default 5

words.

cancel* NEAR:1

order

Matches "cancel order", but not "cancel my order" because of distance between words is more than

requested (1).

brown NEAR quick

NEAR fox

Matches "brown and quick fox", but not "brown fox"

Expression Description

cancel* ONEAR order Matches "cancel my order" but not "order is cancelled", because of the order of terms is

important.

•

•

<term-1> NOTNEAR[:x] <term-2>

2.4.5 Proximity operators (NEAR, ONEAR, NOTNEAR, NOTIN, AFTER)

- 20/22 - Copyright © 2024 MiaRec, Inc.

Operator NOTNEAR finds the term on the left side of the operator (<term-1>) that is not near the term on the right side of the

operator (<term-2>).

Key features:

A distance parameter is optional. If omitted, a default distance of 5 is used, i.e. NOTNEAR is equivalent to NOTNEAR:5

An order of the found terms is not taken into account, i.e. cancel* NOTNEAR account will exclude both "cancel account" and

"account canceled"

Chaining of operator NOTNEAR is not supported.

Use parentheses to specifically group multiple expressions.

For example, cancel* NOTNEAR bank* NOTNEAR account must be rewritten as cancel* NOTNEAR (bank* NOTNEAR account)

NOTIN

Operator NOTIN allows matching terms that are not part of a longer term. For example, you would like to find the word

"problem", but not when it is part of the phrase "not a problem".

Examples:

problem NOTIN "not a problem"

problem NOTIN "no problem"

problem NOTIN ((no|not) ONEAR problem)

problem NOTIN no* ONEAR:2 problem

AFTER[:x]

Finds the phrase that appears in a transcript after another phrase.

An optional argument after the colon symbol (x) is the maximum distance between the searched terms.

Expression Description

cancel* NOTNEAR

account

Matches "cancel order", "order is cancelled", but neither "cancel my account" not "this

account is cancelled".

cancel* NOTNEAR:1

account

Matches "cancel my bank account" but not "cancel account", because of a required distance

between terms is maximum 1.

•

•

•

•

•

•

•

2.4.5 Proximity operators (NEAR, ONEAR, NOTNEAR, NOTIN, AFTER)

- 21/22 - Copyright © 2024 MiaRec, Inc.

Key features:

A distance parameter is optional. If omitted, a default distance of 5 is used, i.e. AFTER is equivalent to AFTER:5

The operator AFTER is partially equivalent to the ONEAR operator, i.e. the search expression you AFTER thank can be replaced

with thank ONEAR you .

But there is one key difference between the AFTER and ONEAR operators: the result of the ONEAR expression is a whole

matched text as a match ("thank you" in our example), while the result of the AFTER expression is the left term only ("you"

in our example).

This becomes very handy when using data redaction functionality with search expressions like R"[0-9]+" AFTER "credit

card" , which has a purpose of redacting digits from audio recording and transcript while keeping the text "credit card"

intact.

The equivalent expression "credit card" ONEAR R"[0-9]+" would redact both the phrase `"credit card", digits and any other

text in between these two found terms.

2.4.6 Count occurrences (REPEATS)

Operator REPEATS finds the term, that occurs the requested number of times in a text. For example, it can be used to find the

phrase where at least 8 digits are spoken.

Syntax:

Where:

<term> is a search expression, which can be a word, phrase or a complex expression like (brown | quick)

N is the minimum number of occurrences of the term in the text

M is the maximum number of occurrences of the term in the text. If omitted, then maximum M is equal to N, i.e brown

MATCHES: 2 is the same as brown MATCHES: 2-2

Examples:

REPEATS:5-10 (great|appreciate)

In some cases, a Regex pattern matching can be used as an alternative to REPEATS operators.

For example, to find consecutive digits in a text, use the expression like:

Such an expression will match digits 0 to 9 in a text, optionally, separated with a space character, and requires a minimum 3,

maximum 10 digits.

It is partially equivalent to the following REPEAT query:

We say partially because the REPEATS operator matches whole words, while REGEX operator can match part within the words.

For instance, both expression will successfully match the digits in the text "credit card number is 1 2 3 4 5 6 7 8".

But, if the digits appear in a text as a single word, like in "credit card number is 12345678", then the REPEATS operator would not

match this text, while REGEX operator successfully matches it.

•

•

Expression Description

R"[0-9]+" AFTER "credit

card"

Matches "123456" in phrase "my credit card number is 123456" but not in "my phone

number is 123456"

REPEATS:N[-M] <term>

•

•

•

•

R"([0-9][]*){3,10}"

REPEATS:3-10 (0|1|2|3|4|5|6|7|8|9)

2.4.6 Count occurrences (REPEATS)

- 22/22 - Copyright © 2024 MiaRec, Inc.

	MiaRec
	1. Introduction
	1.1 Advantages of MQL
	1.2 More examples of MQL expressions

	2. MQL Syntax
	2.1 Searching for Phrases and Words
	2.1.1 Word and Quoted Term matches
	2.1.2 Case insensitiveness
	2.1.3 Escaping a quote character
	2.1.4 Simple (wildcard) pattern
	2.1.5 Regular expression (REGEX) pattern

	2.2 Searching for Named Entities
	2.2.1 Using NER classes in MQL expressions

	2.3 Searching by Metadata
	2.3.1 Call attributes
	2.3.2 Comparison operators
	2.3.3 Multi-value attributes
	2.3.4 Comparing to a sub-expression
	2.3.5 Comparing to another attribute
	2.3.6 Combining an attribute match with a text match

	2.4 Operators
	2.4.1 Grouping
	2.4.2 Precedence rules
	2.4.3 Default operator
	2.4.4 Boolean operators (AND, OR, NOT, & and |)
	Synonyms & and I
	Case in operator names
	Order of the matched terms
	Distance between the matched terms

	2.4.5 Proximity operators (NEAR, ONEAR, NOTNEAR, NOTIN, AFTER)
	NEAR[:x]
	ONEAR[:x]
	NOTNEAR[:x]
	NOTIN
	AFTER[:x]

	2.4.6 Count occurrences (REPEATS)

